- St. Clair County Community College
- Library Research Guides
- SC4 Discipline Specific Guides
- Mathematics
- Differential Equations Resources

This library research guide provides an introduction to library resources related to Mathematics courses.

- Home
- Databases
- Reference Books & E-Journals
- Web Resources
- Career Resources
- APA Citations
- RefWorks
- Research Guide Survey

eBooks are accessible

- Algebraic Approach to Differential Equations by Le Dung Trang Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).ISBN: 9789814273237Publication Date: 2010
- Beginning Partial Differential Equations by Peter V. O'Neil A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of Maple(tm) to perform computations and experiments Unusual applications, such as Poe's pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.ISBN: 9781118629949Publication Date: 2014
- Differential Equations Demystified by Steven G. Krantz Here's the perfect self-teaching guide to help anyone master differential equations--a common stumbling block for students looking to progress to advanced topics in both science and math. Covers First Order Equations, Second Order Equations and Higher, Properties, Solutions, Series Solutions, Fourier Series and Orthogonal Systems, Partial Differential Equations and Boundary Value Problems, Numerical Techniques, and more.ISBN: 9780071440257Publication Date: 2004
- An Introduction to Laplace Transforms and Fourier Series by Phil Dyke In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.ISBN: 9781447163947Publication Date: 2014
- Introduction to Partial Differential Equations by Peter J. Olver This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.ISBN: 9783319020983Publication Date: 2016
- Ordinary Differential Equations by Stephen Wiggins This book consists of ten weeks of material given as a course on ordinary differential equations (ODEs) for second year mathematics majors at the University of Bristol. It is the first course devoted solely to differential equations that these students will take. This book consists of 10 chapters, and the course is 12 weeks long. Each chapter is covered in a week, and in the remaining two weeks I summarize the entire course, answer lots of questions, and prepare the students for the exam. I do not cover the material in the appendices in the lectures. Some of it is basic material that the students have already seen that I include for completeness and other topics are "tasters" for more advanced material that students will encounter in later courses or in their project work. Students are very curious about the notion of chaos, and I have included some material in an appendix on that concept. The focus in that appendix is only to connect it with ideas that have been developed in this course related to ODEs and to prepare them for more advanced courses in dynamical systems and ergodic theory that are available in their third and fourth years.Publication Date: 2017

Circulating books may be checked out in

- Elementary Partial Differential Equations by Paul W. Berg, James L. McGregorCall Number: QA 374 B35Publication Date: 1966
- A Handbook of Numerical Matrix Inversion and Solution of Linear Equations by Joan R. WestlakeCall Number: QA 263 W47Publication Date: 1968
- An Introduction to Ordinary Differential Equations by James C. Robinson This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.Call Number: QA372 .R77 2004ISBN: 0521533910Publication Date: 2004
- The Laplace Transform: An Introduction. by Earl David RainvilleCall Number: QA 432 R3Publication Date: 1963
- Ordinary Differential Equations by Walter LeightonCall Number: QA 372 L46 1970Publication Date: 1970
- A Student's Guide to Numerical Methods by Ian H. Hutchinson This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introductory class, this compact textbook provides a thorough grounding in computational physics and engineering.Call Number: QA39.3 .H92 2015ISBN: 1107095670Publication Date: 2015

Streaming videos are **viewable online**. Search for more using the **Films on Demand Database **or **AVON: Academic Video Online.**

- Differential Equations: Studying the Unsolvable Series5 videos between 14 and 25 minutes each.

2019, 3 Blue 1 Brown.